stabr(0) Frankin Du En abr⁽⁰⁾ Ffor Kn Un En Sn S(n) Novavas Orbit Picture Shiri Moravas Stabil. Scotty Tilton UCSD H^{*} How MOVIA Stabilizen MOVIA Stabilizen Scotty Tilton groups UCSD $\mathbb{Z}/(p)$ $\mathbb{Z}_{(p)}$ \mathbb{Z}_{p} Reminders from last time Lazard Ring L= Z/[x1, x2, ...]= MU* Unicesal grouplan G(x, y)our L s. t & formal group law Four R, J! O: L-1 R S. t F(x, y) = Z; O(aij)xiyi. Gijae $\int = \left(\frac{2}{3} \times + 6 \times \frac{2}{7} + 6 \times \frac{3}{7} + \frac{1}{6} + \frac{1}{6} \times \frac{3}{7} + \frac{1}{6} + \frac{1}{6} \times \frac{3}{7} + \frac{1}{6} \times \frac{3}{7}$ the coeffe ray or tacrisesal framily on lar $\bigcap L \qquad \forall \longmapsto \Theta_{\forall} indud iy \quad \forall G(\forall(\mu), \forall (y))$

 $\log_{F} \text{ of a formal group law is a power series s.t.} \\ \log_{F}(F(k,y)) = \log_{F}(k) + \log_{F}(y)$

$$[n](x) = F(x, [n-1](x))$$
 with $[1](x) = x$

height F(x,y) from an proplan has height it $[p](x) = \alpha x^{p} + (higher terms)$ w/g invertible.

The only prine ideals in
$$L$$
 which are in variational
 $\Gamma \sim L$ are $I_{p,n} := (p, v_1, ..., v_{n-1})$ where
p is prine and $0 \leq n \leq \infty$.
Moreover in $L/I_{p,n}$ for $n > 0$, the subgroup
fixed by Γ is $\mathbb{Z}/(p)$ Lv_n .
In L

Land never Filt ration Theorem

Every module M in CF admits a finite filtration by submodules in CP O = FoM & F, M & ... & F.M = M such that e ach Fi M/Fin Zasuspension of L/Form for some p, n.

Takennay Can localize or p and study $V_p = \mathbb{Z}_{(p)} [V_1, V_2, \dots]$ ake BP.

> Chapter Four

4. The action of [on L. Notation Let H_{ZI}L:= Hom_{Ring} (L, Z) Lazard's thm

Definition An automorphism of a formal group law F is a power series f(x) satisfying f(F(x,y)) = F(f(x), f(y)). It is strict if it has the form $x + O(x^2)$ $f(y) = x + \oint_{i \ge 2} a_i x^i$

3) stab
$$(\theta) = strict actomorphism group of $\theta \in H_{z}$$$

Classification of formal group laws over
Zis tough, but we classified them
over
$$K := IF_p$$
.

Prop 4.1.2 The formal group law own
$$K$$

corresponding to $\Theta \in H_{K}L$ has height n
if and only if $\Theta(v_i) = 0$ for icn and
 $\Theta(v_n) \neq 0$.
Moreover, each $v_n \in L$ is indecomposable, i.e
is a unit multiple (in $Z_{(p)}$) of
 $\chi_{n-1} \neq decomposables$.

4.2 Morava Stabilizer Groups

The nth Moraca statilizer group S_n is the Strict actomorphism group of a height n formal group law over $K = \overline{F_p}$ f(F(x,y)) = F(F(x), f(y))

It is contained in a division algebra Du over the pradic numbers Qp Well get them.

$$\frac{\text{Re call}}{9} = \#_{p}[\overline{5}] \quad \text{then } \overline{7} \text{ is a } (p^{n}-1) \text{ st notof } 1.$$

- Gal (Fpn/Fp) is cyclic at order n generaldy
 Frobenius and xt > x^P.
- There is a degree n extension of the p-adic integers Zp, which we denote $W(F_p^n) = 6y$ adjoining a (p^n-1) or root - 0 - 1, 5 where $\equiv 5 \mod p$
- The Frobenius automorphisms has a lidting σ , which fixes \mathbb{Z}_{ρ} , $\sigma(3) = 3^{\rho}$ and $\sigma(x) \equiv x^{\rho} \mod \rho$. $\forall x \in W(\mathbb{F}_{\rho}^{n})$

• The fraction field of W(#pn) is idenoted Kn.

• Let
$$K_n(S)$$
 be K_n adjoined with a noncommuting
poner series carriable S where $3^{p^n-1} = |$
 $S_x = \sigma(x)S$. $3^{p^n} = 3$
 $S_x = \sigma_n(x)S^n = xS^n$
(Note S commutes with $Q_p \subset K_n$ and S^n commutes
with everything)

The division algeon Dn := Kn ⟨S⟩/(Sⁿ-p).
Mote: This is a rank n² algeora our Qp with center Qp. Rav86 6.2.12
En := W(IFpr) ⟨S⟩/(Sⁿ-p) ⊆ Dn.

En is a complete local ving mits maximum idea (S) and fraction field Apr.

Every
$$a \in En$$
 can be written ! as
 $a = \sum_{i=0}^{n-1} a_i S^i$, $a_i \in W(\mathbb{F}_{p^n})$.
 $a = \sum_{i=0}^{n} e_i S^i$ with $e_i \in W(\mathbb{F}_{p^n})$.
 $a = \sum_{i=0}^{n} e_i S^i$ where $e_i^p - e_i = 0$
 $e_i = 0$ or $a = 0$.

$$E_{n}^{x} = \sum_{i=0}^{\infty} \sum_{i=0}^{\infty} \left[e_{0} \neq 0 \right] \circ \sum_{i=0}^{\infty} \sum_{i=0}^{\infty} \left[a_{0} \in W(H_{p^{n}})^{x} \right].$$

The strict actomorphism group
$$S_n$$
 is isomorphic
to the susgroup
 $\begin{cases} 1 + \sum_{i>0}^{n} e_i S^i \in E_n^{\times} | e_i^{n^2} - e_i = 0 \end{cases} \end{cases} \leq E_n^{\times}$

Consider each
$$e_i: S_n \xrightarrow{cts} F_{pn}$$

The ring of all such forctions is
 $S(h):= F_{pn}[e_1, e_2, e_3, \dots]/(e_i^{pn} - e_i)$
this is a Hopf algebra our F_{pn} with
coproduct induced by Sn.
Compare to Moraun K-theory
 $\Sigma(h) = K(h) + [t_{i_1}t_{2,\dots}]/(t_i^{pn} - U_n^{pn} + t_i)$
and then $S(n) = \Sigma(h) \otimes_{K(h)} F_{pn} \cdot (t_{i_1}^{t_{i_1} \rightarrow e_i})$
Lets see how S_n (Strike automorphisms of firm1)
acts on a formal group law of height n_i Fin.
Making Fin Let F Gen hommi simplaw our Zies with
 $\log_F(k) = \frac{2}{e_{i_0}} \frac{k^{pin}}{p^i}$.
Then Fin is obtained Gyovedering Finod p and
 \circ tensoring with F_{pn} .

An automorphism e of En vis a powr serves

$$e(x) \in \mathbb{F}_{p^n}[[x]]$$
 so this fying
 $e(E_n(x,y)) = F_n(e(w), e(y)).$
Soboom given $e = 1 + \frac{1}{c^2}e: S^2 \in S_n$
 $e(x) = \frac{1}{c^2}F_n e:x^{p^2} = F(e_{ox})Fly(\dots)$
 $(N)totion x + F_Y = F(x,y))$
See more in Rav 86 Appdr 2.
44. 3 Co homological Properties
of Sn.
(to be used by Arseniy and Stangile lateron).
(3 big theorem)
Note: P is essentially the multiplication in
Multiplication in
Manva-K - theory.
How?

Lee H^{*}(Sn) denote the nod & who nology of Sy
and check out Rav 86 Chapter 6 for more.
Theorem 4.3.2
a) H^{*}(Sn) is a finitely generated algebra,
b) If p-1 Kn, then Hⁱ(Sn) =
$$\begin{cases} 0 & i \ge n^2 \\ H^{n^2-i}(Sn) & \notin i \le n^2 \end{cases}$$
 Porrowie
Hⁱ(Sn) = $\begin{cases} 0 & i \ge n^2 \\ H^{n^2-i}(Sn) & \notin i \le n^2 \end{cases}$ Draft
c) If p-1 Kn, then H^{*}(Sn) is porrodic. i.e
 $\exists x \in H^{2i}(Sn)$ for some i >0 s.t H^{*}(Sn) is a
f.g free nodule our Z/(p) [x].
d) Eveny suff. Smill open submap is cohomologically adelean
i.e Same cohomology as $Z_{p}^{n^2}$.
Examples of the submap is cohomologically adelean
i.e Same cohomology as $Z_{p}^{n^2}$.

Theorem 4.3.3 Let
$$S_{n,i} \subseteq S_{n,i} \ge 1$$
 be
the subgroup of E_n^{\times} that is $\equiv | \mod(S)^i$.
i) $S_{n,i}$ are cofinal in the second open subgroups of S_n
ii) The ving of cts. If pn -balad function is
 $S(n,i) = S(n) / (e_j)_{j < i}$
ici) If $i > \frac{pn}{2p-2}$, the cohomology of $S_{n,i}$ is
an exterior algebra on n^2 gen's
iv) Each $S_{n,i}$ is open and normal and
 $[S_{n,i} : S_{n,i+1}] = p^{ni}$ and $S_{ni}/S_{n,i+1}$ is not find.

I hope you have MOV-a-Va picture of these things. Nank S Algesia A&A ->A coalgeon A coult A & A